Klaytn Docs Archive
Getting StartedBuild a dAppNode OperationDeveloper Hub
  • Klaytn Docs
  • -
    • Klaytn Overview
      • Why Klaytn
      • Klaytn Design
        • Consensus Mechanism
        • Accounts
        • Transactions
          • Basic
          • Fee Delegation
          • Partial Fee Delegation
          • Ethereum
        • Computation
          • Klaytn Smart Contract
          • Execution Model
          • Computation Cost
            • Computation Cost (Previous docs)
          • Klaytn Virtual Machine
            • Klaytn Virtual Machine (Previous docs)
        • Storage
          • State Migration
          • StateDB Live Pruning
        • Transaction Fees
          • Transaction Fees (Previous docs)
        • Klaytn native coin - KLAY
        • Token Economy
        • Governance
        • Multi-Channel
        • KNI
      • Scaling Solutions
    • Getting Started
      • Deploying Smart Contract Using Foundry
      • Deploying Smart Contract Using Hardhat
      • Deploying Smart Contract Using Thirdweb
      • Deploying Smart Contract Using KEN
        • Launch an Endpoint Node
        • Top up your Account
        • Install Development Tools
        • Deploy a Smart Contract
        • Check the Deployment
        • Account Management
          • Creating Accounts
          • Managing Accounts
      • Development Environment
      • Getting KLAY
    • Smart Contract
      • Solidity - Smart Contract Language
      • Precompiled Contracts
        • Precompiled Contracts (Previous docs)
      • IDE and Tools
        • Truffle
      • Sample Contracts
        • KlaytnGreeter
        • ERC-20
          • 1. Writing ERC-20 Smart Contract
          • 2. Deploying Smart Contract
          • 3. Interacting with ERC-20 token from Klaytn Wallet
        • ERC-721
          • 1. Writing ERC-721 Smart Contract
          • 2. Deploying Smart Contract
      • Testing Guide
      • Deployment Guide
      • Klaytn Compatible Tokens
      • Porting Ethereum Contract
    • Run a Node
      • Deployment
        • Endpoint Node
          • System Requirements
          • Installation Guide
            • Download
            • Installation Guide
            • Configuration
            • Startup the EN
            • Testing the Installation
          • ken CLI commands
          • JSON-RPC APIs
        • Core Cell
          • System Requirements
          • Network Configuration
          • Installation Guide
            • Download
            • Before You Install
            • Consensus Node Setup
              • Installation Guide
              • Configuration
              • Startup the CN
            • Proxy Node Setup
              • Installation Guide
              • Configuration
              • Startup the PN
            • Testing the Core Cell
          • Monitoring Setup
          • H/A Setup
        • Service Chain
          • Getting Started
            • Setting up a 4-node Service Chain
            • Connecting to Baobab
            • Cross-Chain Value Transfer
            • HA(High Availability) for ServiceChain
            • Nested ServiceChain
            • Value Transfer between Sibling ServiceChains
          • Reference Manuals
            • System Requirements
            • Download
            • SCN User Guide
              • Installation
              • Configuration
              • Starting/Stopping SCN
              • Checking Node Status
              • kscn commands
              • homi commands
            • SPN/SEN User Guide
              • Installation
              • Configuration
              • Starting/Stopping Node
              • Checking Node Status
            • Bridge Configuration
            • Anchoring
            • KAS Anchoring
            • Value Transfer
            • Configuration Files
            • Log Files
            • Genesis JSON
            • Upgrade & Hard Fork
          • How-To Guides
        • Download Node Packages
          • v1.12.0
          • v1.11.1
          • v1.11.0
          • v1.10.2
          • v1.10.1
          • v1.10.0
          • v1.9.1
          • v1.9.0
          • v1.8.4
          • v1.8.3
          • v1.8.2
          • v1.8.1
          • v1.8.0
          • v1.7.3
          • v1.7.2
          • v1.7.1
          • v1.7.0
          • v1.6.4
          • v1.6.3
          • v1.6.2
          • v1.6.1
          • v1.6.0
          • v1.5.3
          • v1.5.2
          • v1.5.1
          • v1.5.0
          • v1.4.2
          • v1.4.1
          • v1.4.0
          • v1.3.0
          • v1.2.0
          • v1.1.1
          • v1.0.0
          • v0.9.6
          • v0.8.2
    • Operation Guide
      • Configuration
      • Node Log
      • Log operation
      • Errors & Troubleshooting
      • Klaytn Command
      • Chaindata Change
      • Chaindata Migration
    • dApp Developers
      • JSON-RPC APIs
        • API references
          • eth
            • Caution
            • Account
            • Block
            • Transaction
            • Config
            • Filter
            • Gas
            • Miscellaneous
          • klay
            • Account
            • Block
            • Transaction
              • Working with Klaytn Transaction Types
            • Configuration
            • Filter
            • Gas
            • Miscellaneous
          • net
          • debug
            • Logging
            • Profiling
            • Runtime Tracing
            • Runtime Debugging
            • VM Tracing
            • VM Standard Tracing
            • Blockchain Inspection
          • admin
          • personal
          • txpool
          • governance
        • Service Chain API references
          • mainbridge
          • subbridge
        • Transaction Error Codes
      • RPC Service Providers
        • Public Endpoints
      • SDK & Libraries for interacting with Klaytn Node
        • caver-js
          • Getting Started
          • Sending a sample transaction
          • API references
            • caver.account
            • caver.wallet
              • caver.wallet.keyring
            • caver.transaction
              • Basic
              • Fee Delegation
              • Partial Fee Delegation
            • caver.rpc
              • caver.rpc.klay
              • caver.rpc.net
              • caver.rpc.governance
            • caver.contract
            • caver.abi
            • caver.kct
              • caver.kct.kip7
              • caver.kct.kip17
              • caver.kct.kip37
            • caver.validator
            • caver.utils
            • caver.ipfs
          • caver-js ~v1.4.1
            • Getting Started (~v1.4.1)
            • API references
              • caver.klay
                • Account
                • Block
                • Transaction
                  • Legacy
                  • Value Transfer
                  • Value Transfer Memo
                  • Account Update
                  • Smart Contract Deploy
                  • Smart Contract Execution
                  • Cancel
                • Configuration
                • Filter
                • Miscellaneous
              • caver.klay.net
              • caver.klay.accounts
              • caver.klay.Contract
              • caver.klay.KIP7
              • caver.klay.KIP17
              • caver.klay.abi
              • caver.utils (~v1.4.1)
            • Porting from web3.js
        • caver-java
          • Getting Started
          • API references
          • caver-java ~v1.4.0
            • Getting Started (~v1.4.0)
            • Porting from web3j
        • ethers.js
        • web3.js
      • Tutorials
        • Klaytn Online Toolkit
        • Fee Delegation Example
        • Count DApp
          • 1. Environment Setup
          • 2. Clone Count DApp
          • 3. Directory Structure
          • 4. Write Smart Contract
          • 5. Frontend Code Overview
            • 5-1. Blocknumber Component
            • 5-2. Auth Component
            • 5-3. Count Component
          • 6. Deploy Contract
          • 7. Run App
        • Klaystagram
          • 1. Environment Setup
          • 2. Clone Klaystagram DApp
          • 3. Directory Structure
          • 4. Write Klaystagram Smart Contract
          • 5. Deploy Contract
          • 6. Frontend Code Overview
          • 7. FeedPage
            • 7-1. Connect Contract to Frontend
            • 7-2. UploadPhoto Component
            • 7-3. Feed Component
            • 7-4. TransferOwnership Component
          • 8. Run App
        • Building a Buy Me a Coffee dApp
          • 1. Project Setup
          • 2. Creating a BMC Smart Contract
          • 3. Testing the contract using scripts
          • 4. Deploying BMC Smart contract
          • 5. Building the BMC Frontend with React and Web3Onboard
          • 6. Deploying Frontend code on IPFS using Fleek
          • 7. Conclusion
        • Migrating Ethereum App to Klaytn
        • Connecting MetaMask
        • Connecting Remix
        • Verifying Smart Contracts Using Block Explorers
      • Developer Tools
        • Wallets
          • Kaikas
          • Klaytn Wallet
          • Klaytn Safe
            • Klaytn Safe Design
            • Create a Safe
            • Add assets
            • Send assets
            • Contract Interaction
            • Transaction Builder
            • Points to Note
            • Frequently Asked Questions
          • SafePal S1
          • Wallet Libraries
            • Web3Auth
            • Web3Modal
            • Web3-Onboard
            • Particle Network
        • Oracles
          • Orakl Network
          • Witnet
          • SupraOracles
        • Indexers
          • SubQuery
        • Cross-chain
          • LayerZero
        • Block Explorers
          • Klaytnscope
          • Klaytnfinder
        • Klaytn Contracts Wizard
    • Glossary
  • ---
    • Klaytn Hard Fork History
    • Klaytn 2.0
      • Metaverse Package
      • Finality and Improvements
      • Ethereum Compatibility
      • Decentralizing Governance
      • Massive Eco Fund
    • FAQ
    • Open Source
    • Terms of Use
    • Languages
  • ℹ️Latest Klaytn Docs
Powered by GitBook
On this page
  1. -
  2. Klaytn Overview
  3. Klaytn Design
  4. Computation

Klaytn Smart Contract

Smart contracts in Klaytn are programs that implement business logics, games, libraries, token transfers, or any type of code interacting with the Klaytn blockchain. When conditions described in the smart contract are met, the contract executes immediately. The terms within smart contracts are described in programming language; their contents data are stored as their state.

Klaytn provides several ways to write and execute smart contracts on the Klaytn network. First, Klaytn supports Solidity and maintains interoperability with Ethereum development toolkits such as Remix or Truffle. Smart contracts written in Solidity can be compiled using existing Solidity compilers and execute on Klaytn without additional work. Since Solidity is the de facto standard contract programming language in Ethereum and is backed by active communities, Klaytn supports the language to provide developers with the most familiar development environment onto which Ethereum DApp developers could easily migrate their existing work.

In the future, Klaytn plans to accommodate smart contracts written in various programming languages, in order to extend support to a broader range of potential developers and provide them with development experience they feel they're most familiar with. Going forward, Klaytn will continue to explore various programming languages that developers find interesting.

Affordable Smart Contract Execution Cost

One of the reasons that blockchains charge fees on smart contract executions is to utilize limited resources efficiently by preventing poorly or maliciously written contracts from running. That is, a blockchain platform increases the financial cost of running smart contracts intentionally (1) to induce developers to write efficient code, and (2) to deter adversaries in launching attacks by minimizing the expected financial gains. With a successful strategy, the fees charged on normal executions should be small, although the fees from malicious executions should be large. Although Ethereum’s opcode-based fee model is useful in discouraging wasting of resources, it may also dampen ordinary smart contract executions due to high gas prices on some opcodes (e.g., state write), hindering the adoption of blockchain technologies. To address this problem, Klaytn plans to use an opcode-based fixed fee model with low unit cost per opcode. This is made possible by dramatically increasing scalability of blockchain protocol.

Opcode cost is directly related to the amount of resources that the platform can use. The Ethereum state write cost is high since the storage, and the network bandwidth required to record and propagate the changed states are limited. Conversely, if a blockchain has abundant resources (e.g., CPU time, storage, network bandwidth), then the unit cost per opcode can be substantially lower than that of Ethereum, and the cost difference between opcodes can be minimized. Klaytn aims to lower opcode unit cost by vertically scaling each CN node (i.e., acquiring high-end hardware), parallelizing computation (i.e., logical scaling via service chain), and horizontally scaling physical clusters.

PreviousComputationNextExecution Model

Last updated 2 years ago